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Abstract: Let W̃ be a two-parameter, Rd-valued generalized Brownian sheet. We can view W̃ as a sequence of
interacting generalized Brownian motions or slices. The sample path properties for the slices of W̃ are studied,
and the connections between the polar sets for the slices of W̃ and capacity are also presented. A common feature
of our results is that exhibit phase transition.
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1 Introduction
Given 0 < α ≤ 1, 1 ≤ β < ∞, let Y = {Y (s, t) :
s, t ∈ [0,∞)} be the real-valued, centered gaussian
random field with covariance function

E[Y (s, t)Y (u, v)] = F1(0, s ∧ u]F2(0, t ∧ v], (1)

where F1, F2 denote Lebesgue-Stieljes measure that
are absolutely continuous with respect to Lebesgue
measure. Suppose that for each ℓ = 1, 2, Fℓ satisfies
the following condition: there exist positive constants
c, δ such that for all s, t ∈ [0,∞) with |t− s| < δ,

c−1|s− t|β ≤ |Fℓ(0, s]− Fℓ(0, t]| ≤ c|s− t|α. (2)

Consider the gaussian random field W̃ =

{W̃ (s, t), s, t ∈ [0,∞)} in Rd defined by

W̃ (s, t) =
(
W̃1(s, t), . . . , W̃d(s, t)

)
,

where W̃1(s, t), . . . , W̃d(s, t) are independent copies
of Y . Then W̃ is called a two-parameter, Rd-valued
generalized Brownian sheet with indexes α, β. A typ-
ical example of a generalized Brownian sheet is the
Brownian sheet taking values in Rd with the Lebesgue
measure, that is W (s, t) =

(
W1(s, t), . . . ,Wd(s, t)

)
,

where W1, . . . ,Wd are independent copies of the cen-
tered real valued gaussian random field X with co-
variance function

E[X(s, t)X(u, v)] = (s ∧ u)(t ∧ v).

It is easy to see that W̃ is an independent increment
process; see [1]. [2] gave some reasonable remarks on

0 < α ≤ 1, 1 ≤ β < ∞ in (2). Even if α = β = 1,
we can say that W̃ is also wider than the Brownian
sheet; see the example in Section 5 for a precise state-
ment .

For the generalized Brownian sheet, there are
some excellent arguments such as [1-7]. However,
contrast to the extensive studies on the Brownian
sheet, there has been little systematic investigation on
the generalized Brownian sheet. The main reasons for
this, in my opinion, are the complexity of dependence
structures and the non-availability of convenient scal-
ing property for these more general independent incre-
ment gaussian processes. The objective of this paper
is to further study the sample path properties of the
slices of W̃ .

Choose and fix some number s > 0. The slice of
W̃ along s is the stochastic process {W̃ (s, t), t ≥ 0}.
It is easy to see that if s is non-random then the slice
of W̃ is a one parameter generalized Brownian sheet.
More precisely, t 7→ F

−1/2
1 (0, s]W̃ (s, t) is a standard

generalized d-dimensional Brownian motion. It is not
difficult to see that if s is random, then the slice of W̃
along s need not be a generalized Brownian motion.
For example, whenW is a two-dimensional Brownian
sheet in Rd, the slice of W along a non-random s hits
points if and only if d = 1. However, there are ran-
dom values of s such that the slice of W along s hits
zero up to dimension d = 3 (cf. [8]). Nonetheless,
one may expect the slice of W̃ along s to look like a
generalized Brownian motion in some sense, even for
some random values of s.

A common question in infinite-dimensional
stochastic analysis is to ask if there are slices that
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behave differently from d-dimensional Brownian mo-
tion predescribed manner. There is a large litera-
ture on this subject (cf. [9]). On the other hand,
some new examples where there is, generally, a cut-
off phenomenon or phase transition are presented on
the sheet (cf. [10]). In this paper, we present some
results about the slices of the generalized Brownian
sheet. The relationships between the polar sets for the
slices of W̃ and capacity are also obtained. A com-
mon feature of our results is that exhibit phase transi-
tion. Our approach is based on the results on the slices
of the Brownian sheet in [10].

Our first result is related to the zero-set of the gen-
eralized Brownian sheet. Orey and Pruit have proven
that W−1{0} is non-trivial if and only if the spatial
dimension d is three or less in [8]. See also [11]
and [12]. Khoshnevisan has studied the slices of the
Brownian sheet in [10] and the relationship between
Brownian sheet images and Bessel-Riesz capacity in
[14] respectively. Chen has proven the following re-
finement in [6]: For all non-random, compact sets
E,F ⊂ (0,∞),

A1Capβd/2(E × F ) ≤ P{W̃−1{0} ∩ (E × F ) ̸= ∅}
≤ A2Capαd/2(E × F ), (3)

where A1, A2 are finite positive constants, and for
all γ > 0, Capγ(E × F ) denotes the γ-dimensional
Bessel-Riesz capacity of E × F based on the d-
dimensional energy form Iγ ; i.e.

Capγ(E × F ) =
1

infµ∈P(E×F ) Iγ(µ)
,

where

Iγ(µ)=̂

∫ ∫
1

|s− t|γ
µ(ds)µ(dt),

and P(E × F ) denotes the collection of all probabil-
ity measures that are supported in E × F . The results
in [8] and [14] follows immediately from (3) and Tay-
lor’s theorem.

Now consider the projection Ld of W̃−1{0} onto
x-axis. Choose and fix two number 0 < a < b < ∞
with b− a < δ. Let

Ld=̂{s ≥ 0 : W̃ (s, t) = 0 for some t ∈ [a, b]}. (4)

Thus, s ∈ Ld if and only if the slice of W̃ along s hits
zero. Of course, zero is always in Ld. The following
results characterize the polar sets of Ld.

Theorem 1 For all non-random compact sets F ⊂
(0,∞) with diamF < δ, then

K1Cap(βd−2)/2(F ) ≤ P{Ld ∩ F ̸= ∅}
≤ K2Cap(αd−2)/2(F ), (5)

where K1 and K2 are finite positive constants which
only depend on the parameters a, b, α, β and d.

The following is a consequence of Theorem 1.

Corollary 2 For all non-random compact sets F ⊂
(0,∞) with diamF < δ, then

Cap(βd−2)/2(F ) > 0 ⇒ P{Ld ∩ F ̸= ∅} > 0

⇒ Cap(αd−2)/2(F ) > 0.

Furthermore, we can apply Theorem 1 and a codi-
mension argument ([15], Theorem 4.7.1, p.436) to
find that

1 ∧
(
2− βd

2

)+
≤ dimH Ld ≤ 1 ∧

(
2− αd

2

)+
a.s.,

where dimH denotes Hausdorff dimension.
Next, for all 0 < a < b < ∞, we consider the

following random set,

Dd=̂{a ≤ s ≤ b : W̃ (s, t1) = W̃ (s, t2)

for some t2 > t1 > 0}. (6)

We can note that s ∈ Dd if and only if the slice of W̃
along s has a double point.

For the Brownian sheet, Lyons has proven that Dd

is non-trivial if and only if d ≤ 5 in [16]. That is

P{Dd ̸= {0}} ≥ 0 if and only if d ≤ 5. (7)

See also [17]. Lyons’s theorem (10) is an improve-
ment to an earlier theorem in [11] which asserts the
necessity of the condition d ≤ 6. Our next result
characterizes the polar sets of Dd for the generalized
Brownian sheet.
Theorem 3 Choose and fix two numbers 0 < a <
b < ∞ with b − a < δ. Then, there exist positive
constants K3 and K4 such that for all compact, non-
random sets F ⊂ [a, b],

K3Capβ(d−4)/2(F ) ≤ P{Dd ∩ F ̸= ∅}
≤ K4Capα(d−4)/2(F ). (8)

The following corollary is a consequence of Theorem
3.

Corollary 4 Let F ⊂ (0, ∞) be a non-random
compact set with diamF < δ . Then

Capβ(d−4)/2(F ) > 0 ⇒ P{Dd ∩ F ̸= ∅} > 0

⇒ Capα(d−4)/2(F ) > 0. (9)
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Lyons’s theorem (10) follows at once from this and
Taylor’s theorem. In addition, a codimension argu-
ment reveals that almost surely

1 ∧
(
3− βd

2

)+
≤ dimHDd ≤ 1 ∧

(
3− αd

2

)+
.

Finally, we consider the random sets

D̂d := {(s, t1, t2) ∈ [a, b]3 : W̃ (s, t1) = W̃ (s, t2)}

D̄d := {(s, t1) ∈ [a, b]2 : W̃ (s, t1) = W̃ (s, t2) for

some t2 > 0}. (10)

The following theorem characterizes the polar
sets of D̄d and D̂d. This method is not sufficiently
delicate, but I also believe such a characterization is
within reach of the existing technology (cf. [6]).

Theorem 5 Choose and fix two numbers 0 < a <
b < ∞ with b − a < δ . Then, there exist constants
K5 and K6 such that for all non-random compact set
E ⊂ [a, b]2 and G ⊂ [a, b]3,

K−1
5 Capβd/2(G) ≤ P{D̂d ∩G ̸= ∅}

≤ K5Hαd/2(G), (11)

K−1
6 Capβ(d−2)/2(E) ≤ P{D̄d ∩ E ̸= ∅}

≤ K6Hα(d−2)/2(E), (12)

where Hγ denotes the γ-dimensional Hausdorff
measure.

Corollary 6 For all non-random compact sets E ⊂
[a, b]2 and G ⊂ [a, b]3 with b− a ≤ δ,

Capβd/2(G) > 0 ⇒ P{D̂d ∩G ̸= ∅} > 0

⇒ Hαd/2(G) > 0,

Capβ(d−2)/2(E) > 0 ⇒ P{D̄d ∩ E ̸= ∅} > 0

⇒ Hα(d−2)/2(E) > 0.

The remainder of this paper is organized as follows.
In Section 2, we introducing some basic real-variable
computations by analyzing the properties of three
classes of functions. Theorems 3 and 5 are respec-
tively proved in Sections 3 and 4. Section 5 contains
the proof of Theorem 1, some corollaries of Theo-
rems 1, 3 and 5, and a few related remarks. Even if
α = β = 1, we can say that W̃ is also wider than
Brownian sheet in the above theorem . The results that
we obtain are sharper and more general than those of
the Brownian sheet.

Throughout, any n-vector x is written, coordi-
natewise, as x = (x1, . . . , xn). Moreover, |x| will
always denote the ℓ1-norm of x ∈ Rn; i.e.,

|x|=̂|x1|+ · · ·+ |xn|.

Generic constants that do not depend on anything in-
teresting are denoted by c, c1, c2, . . . ;K,K1,K2, . . . ;
they are always assumed to be positive and finite, and
their values may change between, as well as within,
lines. Let A denote a Borel set in Rn. The collec-
tion of all Borel probability measures on A is always
denoted by P(A).

2 Some Estimates
Our analysis depends on the properties of three classes
of functions. We develop the requisite estimates here
in this section. We define for all ϵ, h > 0 and x ∈ R,

fϵ(x)=̂
( ϵ

|x|
1
2

∧ 1
)d
,

gϵ(x)=̂

∫ h

0
fϵ(y + |x|)dy,

Gϵ(x)=̂

∫ h

0
gϵ(y + |x|)dy.

Our first result is a simple fact which can be deduced
from the covariance of the generalized Brownian
sheet.

Lemma 7 There exist constants c1, c2 > 0 such
that for all ϵ > 0 and s, t ∈ (0,∞),

c1fϵ(F1(0, s]F2(0, t]) ≤ P{|W̃ (s, t)| ≤ ϵ}
≤ c2fϵ(F1(0, s]F2(0, t]). (13)

Proof: Note that |W̃ (s, t)| = |W̃1(s, t)| + · · · +
|W̃d(s, t)|. Therefore,

P{|W̃ (s, t)| ≤ ϵ}

≤P{|W̃1(s, t)| ≤ ϵ, . . . , |W̃d(s, t)| ≤ ϵ}

=
[( ∫ ϵ

−ϵ

1√
2πF1(0, s]F2(0, t]

× exp
(
− u2

2F1(0, s]F2(0, t]

)
du
)
∧ 1
]d

≤2d
( ϵ√

F1(0, s]F2(0, t]
∧ 1
)d
. (14)
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The upper bound of the lemma follows from (14).
To derive the lower bound, we can find that when ϵ2 ≤
F1(0, s]F2(0, t],

P{|W̃ (s, t)| ≤ ϵ}

≥P{|W̃1(s, t)| ≤
ϵ

d
, . . . , |W̃d(s, t)| ≤

ϵ

d
}

=
(∫ ϵ/d

−ϵ/d

1√
2πF1(0, s]F2(0, t]

× exp
(
− u2

2F1(0, s]F2(0, t]

)
du
)d

≥
( 2

πd2

)d/2
exp

(
− 1

2d2

)( ϵ√
F1(0, s]F2(0, t]

)d
=c3fϵ(F1(0, s]F2(0, t]). (15)

The same reasoning shows that when ϵ2 ≥
F1(0, s]F2(0, t],

P{|W̃ (s, t)| ≤ ϵ}

=
(∫ ϵ

−ϵ

1√
2πF1(0, s]F2(0, t]

× exp
(
− u2

2F1(0, s]F2(0, t]

)
du
)d

=
(∫ ϵ/

√
F1(0,s]F2(0,t]

−ϵ/
√

F1(0,s]F2(0,t]

1√
2π

exp
(
− u2

2

)
du
)d

≥
(∫ 1

−1

1√
2π

exp
(
− u2

2

)
du
)d
fϵ(F1(0, s]F2(0, t])

=c4fϵ(F1(0, s]F2(0, t]). (16)

Taking c1 = min{c3, c4}, we finished the proof of
Lemma 7 by (15) and (16). ⊓⊔

Let γ ∈ R and x ∈ R\{0} define

Uγ(x)=̂


1, if γ < 0,
log+(1/|x|), if γ = 0,
|x|−γ , if γ > 0.

(17)

Next, we derive the upper and lower bounds for
gϵ in terms of the above function Uγ that is defined in
(2.5).

Lemma 8 There exist constants c5, c6 > 0 such
that for all ϵ > 0 and 0 < y ≤ δ,

gϵ(Fℓ(0, y]) ≤ c5ϵ
dUβ(d−2)/2(y), ℓ = 1, 2, (18)

and for all F (0, y] ≥ ϵ2,

gϵ(Fℓ(0, y]) ≥ c6ϵ
dUα(d−2)/2(y), ℓ = 1, 2. (19)

Proof: It follows from (2) and 0 < y ≤ δ that

c−1yβ ≤ Fℓ(0, y] ≤ cyα. (20)

By the definition of the function gϵ, we have

gϵ(Fℓ(0, y])

≤ϵd
∫ h

0

dx

(x+ Fℓ(0, y])d/2

=ϵd
∫ h+Fℓ(0,y]

Fℓ(0,y]

dx

xd/2

≤



2ϵd

2− d
(h+ Fℓ(0, δ])

1−d/2, if d < 2,

ϵd ln
(h+ Fℓ(0, δ])

Fℓ(0, y]
, if d = 2,

2ϵd

d− 2
(Fℓ(0, y])

1−d/2, if d > 2.

(21)

For all F (0, y] ≥ ϵ2, we use the same reasoning
to show that

gϵ(Fℓ(0, y])

=ϵd
∫ h+Fℓ(0,y]

Fℓ(0,y]

dx

xd/2

≥



2ϵd

2− d
h1−d/2

×
[
1−

( Fℓ(0, δ]

h+ Fℓ(0, δ]

)1−d/2]
, if d < 2,

ϵd ln
h

Fℓ(0, y]
, if d = 2,

2ϵd

d− 2
(Fℓ(0, y])

1−d/2

×[1− (1 + hF−1
ℓ (0, δ])1−d/2], if d > 2.

(22)

The lemma follows from (20), (21) and (22). ⊓⊔
By the definition of the function Gϵ, we also note

that

Gϵ(x)=̂

∫ h

0
gϵ(y + |x|)dy

=

∫ h

0

∫ h

0
fϵ(|x|+ y1 + y2)dy1dy2. (23)

The following lemma follows from Lemma 8 and
some elementary estimates.
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Lemma 9 Choose and fix a number 0 < b < ∞.
Then there exist constants c7, c8 > 0 such that for all
ϵ > 0 and 0 < y ≤ x ≤ b with x− y ≤ δ,

Gϵ(Fℓ(0, x]− Fℓ(0, y]) ≤ c7ϵ
dUβ(d−4)/2(x− y),

(24)

and for all Fℓ(0, x]− Fℓ(0, y] ≥ ϵ2,

Gϵ(Fℓ(0, x]− Fℓ(0, y]) ≥ c8ϵ
dUα(d−4)/2(x− y),

(25)
where ℓ = 1, 2.

Proof: It follows from (2) and x− y ≤ δ that

c−1|x−y|β ≤ |Fℓ(0, x]−Fℓ(0, y]| ≤ c|x−y|α. (26)

We first prove (24) for ϵ > 0 and 0 < y ≤ x ≤
b. By using (17) and a similar computation as in the
proof of Lemma 8, we have

Gϵ(Fℓ(0, x]− Fℓ(0, y])

=

∫ h

0
gϵ(z + |Fℓ(0, x]− Fℓ(0, y]|)dz

≤



c9ϵ
dh(2h+ Fℓ(0, b])

(2−d)/2, if d < 2,

c9ϵ
d(h ln 2 + h), if d = 2,

c9ϵ
d 2

4− d
(h+ Fℓ(0, b])

(4−d)/2, if 2 < d < 4,

c10ϵ
d ln

h+ Fℓ(0, b]

|Fℓ(0, x]− Fℓ(0, y]|
, if d = 4,

c10ϵ
d|Fℓ(0, x]− Fℓ(0, y]|(4−d)/2, if d > 4.

This, together with (26), implies the upper in (24).
The lower in (25) is proved along the same lines. ⊓⊔
Lemma 10 For all ϵ > 0 and x ≥ 0,

Gϵ(Fℓ(0, x]) ≥
1

2

∫ 2h

0
gϵ(y + Fℓ(0, x])dy.

Proof: By the change of the variance with y = t/2
and the monotonicity, we have

Gϵ(Fℓ(0, x]) =

∫ h

0
gϵ(y + Fℓ(0, x])dy

=
1

2

∫ 2h

0
gϵ(

t

2
+ Fℓ(0, x])dt

≥ 1

2

∫ 2h

0
gϵ(y + Fℓ(0, x])dy.

This finishes the proof of the lemma. ⊓⊔

3 Polar sets of Dd

In this section, we characterizes the polar sets of Dd

generated by the generalized Brownian sheet. Be-
cause of the complicated covariance, the proof of the
polar sets of Dd is quite involved. Therefore, we split
the proof into several lemmas, which are also of their
own interest.

Choose and fix two number 0 < a < b < ∞.
Let W̃ (1) and W̃ (2) be two independent generalized
Brownian sheets in Rd, and define for all µ ∈ P(R+),

Jϵ(µ)=̂
1

ϵd

∫ b

a

∫ b

a

∫
1A(ϵ;s,t)µ(ds)dF2(0, t1]dF2(0, t2],

(27)
where A(ϵ; s, t) is the event

A(ϵ; s, t)=̂
{
|W̃ (2)(s, t2)− W̃ (1)(s, t1)| ≤ ϵ

}
, (28)

for all a ≤ s, t1, t2 ≤ b and ϵ > 0.

Lemma 11 Choose and fix two numbers 0 < a <
b <∞ . Then,

inf
0<ϵ<1

inf
µ∈P([a,b])

E[Jϵ(µ)] > 0. (29)

Proof: For all s, t1, t2 ∈ [a, b], let

σ2=̂Var
(
W̃

(2)
j (s, t2)− W̃

(1)
j (s, t1)

)
, 1 ≤ j ≤ d.

The independence of W̃ (1) and W̃ (2) implies

2F1(0, a]F2(0, a] ≤ σ2 ≤ 2F1(0, b]F2(0, b]. (30)

By (28) and (30), we have

P
{
A(ϵ; s, t)

}
≥
[ ∫ ϵ/d

−ϵ/d

1√
2πσ

exp
(
− u2

2σ2

)
du
]d

≥
( ε2

πF1(0, b]F2(0, b]d2

)d/2
× exp

(
− ϵ2

4dF1(0, a]F2(0, a]

)
. (31)

By (27) and (31), we have

E[Jϵ(µ)]

=
1

ϵd

∫ b

a

∫ b

a

∫
P
{
A(ϵ; s, t)

}
µ(ds)dF2(0, t1]dF2(0, t2]

≥(F2(0, b]− F2(0, a])
2µ([a, b])(

πF1(0, b]F2(0, b]d2
)d/2

× exp
(
− ϵ2

4dF1(0, a]F2(0, a]

)
.
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This proves the lemma. ⊓⊔
Next we present a bound for the second moment

of Jϵ(µ). For technical reason, we first define

Ĵϵ(µ)=̂
1

ϵd

∫ c

a

∫ c

a

∫
1A(ϵ;s,t)µ(ds)dF2(0, t1]dF2(0, t2],

(32)

Lemma 12 Choose and fix three numbers 0 < a <
b < c <∞ with c− a ≤ δ . Then, there exist positive
constants c9 and c10 such that for all Borel probability
measures µ on R+ and all 0 < ϵ < 1,

E[Ĵϵ(µ)]2 ≤
c9
ϵd

∫ ∫
Gϵ(F1(0, s]− F1(0, u])µ(ds)µ(du)

≤c10Iβ(d−4)/2(µ). (33)

Proof: Define Ŵ (i) to be the generalized white
noise that corresponds to the generalized Brownian
sheet W̃ (i) (i = 1, 2). It is convenient to think of
W̃ (i) as the distribution function of a d-dimensional
generalized white noise Ŵ (i) on R2

+; see the sur-
vey paper [21]. For all ϵ > 0, s, u ∈ [a, b], and
t = (t1, t2), v = (v1, v2) ∈ [a, b]× [b, c], let

Pϵ(s, u; t, v)=̂P
{
A(ϵ; s, t) ∩A(ϵ;u, v)

}
. (34)

By symmetry, we assume that s ≤ u. We give an
estimate of (34) by analyzing two different cases.

The first case is that t1 ≤ v1 and t2 ≤ v2. Con-
sider

H
(1)
1 =̂Ŵ (1)([0, s]× [0, t1]),

H
(1)
2 =̂Ŵ (1)([0, s]× [t1, v1]),

H
(1)
3 =̂Ŵ (1)([s, u]× [0, v1]);

H
(2)
1 =̂Ŵ (2)([0, s]× [0, t2]),

H
(2)
2 =̂Ŵ (2)([0, s]× [t2, v2]),

H
(2)
3 =̂Ŵ (2)([s, u]× [0, v2]).

Thus, the H ′s are all totally independent Gaussian
random vectors. By the triangle inequality,

Pϵ(s, u; t, v)

=P
{
|H(2)

1 −H
(1)
1 | ≤ ϵ; |H(2)

1 +H
(2)
2

+H
(2)
3 −H

(1)
1 −H

(1)
2 −H

(1)
3 | ≤ ϵ

}
≤P
{
|H(2)

1 −H
(1)
1 | ≤ ϵ

}
× P

{
|H(2)

2 +H
(2)
3 −H

(1)
2 −H

(1)
3 | ≤ 2ϵ

}
=̂I × J. (35)

As Γ1=̂H
(2)
1 −H(1)

1 and Γ2=̂H
(2)
2 +H

(2)
3 −H(1)

2 −
H

(1)
3 both have i.i.d. mean 0 coordinates , one can

check the coordinatewise variances and find that for
all 1 ≤ i ≤ d,

Var(Γ
(i)
1 ) =F1(0, s](F2(0, t1] + F2(0, t2])

≥2F1(0, a]F2(0, a], (36)

Var(Γ
(i)
2 ) =F1(0, s](F2(0, v2]− F2(0, t2])

+ (F1(0, u]− F1(0, s])F2(0, v2]

+ F1(0, s](F2(0, v1]− F2(0, t1])

+ (F1(0, u]− F1(0, s])F2(0, v1]

≥min{F1(0, a], 2F2(0, a]}
(
|F1(0, u]

− F1(0, s]|+ |F2(0, v1]− F2(0, t1]|
+ |F2(0, v2]− F2(0, t2]|

)
. (37)

By (35), (36), (37) and Lemma 7, we have I ≤ c11ϵ
d

and

J ≤c12fϵ
(
|F1(0, u]− F1(0, s]|+ |F2(0, v1]

− F2(0, t1]|+ |F2(0, v2]− F2(0, t2]|
)
. (38)

By (35) and (38), we have

Pϵ(s, u; t, v) ≤c13ϵdfϵ
(
|F1(0, u]− F1(0, s]|

+ |F2(0, v1]− F2(0, t1]|
+ |F2(0, v2]− F2(0, t2]|

)
. (39)

The second case is that t2 ≥ v2 and t1 ≤ v1. We
can replace the H(j),

i s of (35) with the following:

H
(1)
1 =̂Ŵ (1)([0, s]× [0, t1]), H

(1)
2 =̂Ŵ (1)([0, s]× [t1, v1]),

H
(1)
3 =̂Ŵ (1)([s, u]× [0, v1]);H

(2)
1 =̂Ŵ (2)([0, s]× [0, v2]),

H
(2)
2 =̂Ŵ (2)([0, s]× [v2, t2]), H

(2)
3 =̂Ŵ (2)([s, u]× [0, v2]).

It follows then that

Pϵ(s, u; t, v)

=P
{
|H(2)

1 +H
(2)
2 −H

(1)
1 | ≤ ϵ; |H(2)

1 +H
(2)
3

−H
(1)
1 −H

(1)
2 −H

(1)
3 | ≤ ϵ

}
. (40)

As the density function of H(2)
1 −H

(1)
1 is bound

above by K=̂(2πF1(0, a]F2(0, a])
−d/2. Therefore,

by the unimodality of centered multivariate Gaussian
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distributions,

Pϵ(s, u; t, v)

=c14

∫
Rd

P
{
|H(2)

2 + z| ≤ ϵ; |H(2)
3 −H

(1)
2

−H
(1)
3 + z| ≤ ϵ

}
dz

≤c14
∫
{|ω|≤ϵ}

P
{
|H(2)

3 −H
(2)
2 −H

(1)
2

−H
(1)
3 + ω| ≤ ϵ

}
dω

≤c14(2ϵ)dP
{
|H(2)

3 −H
(2)
2 −H

(1)
2

−H
(1)
3 | ≤ ϵ

}
. (41)

As Γ3=̂H
(2)
3 −H

(2)
2 −H

(1)
2 −H

(1)
3 has i.i.d. mean 0

coordinates , we can show that for all 1 ≤ i ≤ d,

Var(Γ
(i)
3 ) =(F1(0, u]− F1(0, s])F2(0, v2]

+ F1(0, s](F2(0, t2]− F2(0, v2])

+ F1(0, s](F2(0, v1]− F2(0, t1])

+ (F1(0, u]− F1(0, s])F2(0, v1]

≥min{F1(0, a], 2F2(0, a]}
(
|F1(0, u]

− F1(0, s]|+ |F2(0, v1]− F2(0, t1]|
+ |F2(0, t2]− F2(0, v2]|

)
. (42)

By (41), (42), and Lemma 7, we have

Pϵ(s, u; t, v) ≤c15ϵdfϵ
(
|F1(0, u]− F1(0, s]|

+ |F2(0, v1]− F2(0, t1]|
+ |F2(0, t2]− F2(0, v2]|

)
. (43)

Symmetry considerations, together with Cases 1 and
2, prove that (39) and (43) holds for all possible con-
figurations of (s, u, t, v). It follows from (39), (43),
and Fubini-Tonelli theorem,

E[Ĵϵ(µ)]2

≤c16
ϵd

∫ ∫ [ ∫ ∫
[a,c]2×[a,c]2

fϵ
(
|F1(0, u]− F1(0, s]|

+ |F2(0, v1]− F2(0, t1]|+ |F2(0, t2]− F2(0, v2]|
)

dF2(0, t1]dF2(0, t2]dF2(0, v1]dF2(0, v2]
]
µ(ds)µ(du)

≤c9
ϵd

∫ ∫
Gϵ

(
F1(0, u]− F1(0, s]

)
µ(ds)µ(du).

This is the first inequality of the lemma. By the above
inequality and Lemma 9, we have

E[Ĵϵ(µ)]2 ≤ c10

∫ ∫
Uβ(d−4)/2(u− s)µ(ds)µ(du)

= c10Iβ(d−4)/2(µ).

This completes our proof. ⊓⊔
For all s, t, u, v ∈ [0,∞), define the partial or-

der as follows: (s, t) 4 (u, v) if and only if s ≤
u and t ≤ v. For all i ∈ {1, 2} and s, t ∈ [0,∞),
define

F (i)
s,t =̂σ

(
W̃ (i)(u, v) : 0 ≤ u ≤ s; 0 ≤ v ≤ t

)
.

We can assume that F (i),s are complete and right-
continuous in the partial order ” 4 ”. If not, then
complete F (i) and then make it 4-right continuous.
Based on F (1) and F (2), we define

Fs;t,v=̂F (1)
s,t ∨ F (2)

s,v for all s, t, v ≥ 0.

The following is the Cairoli,s maximal inequality
with respect to the family of Fs;t,v

,s.

Lemma 13 Choose and fix a number p > 1. Then
for almost surely nonnegative random variable Y ∈
Lp=̂Lp(Ω,∨Fs;t,v≥0,P),

E
[

sup
s,t,v∈Q+

E
[
Y |Fs;t,v

]]p
≤
( p

p− 1

)3p
E
[
Y p
]
.

Proof: By using Corollary 3.5.1 in [15, p.37], it suf-
fices to show that for all s, s′, t, t′, v, v′ ≥ 0, and
all bounded random variables Y that are Fs′,t′,v′-
measurable,

E
[
Y |Fs;t,v

]
= E

[
Y |Fs∧s′;t∧t′,v∧v′

]
a.s. (44)

This proves that the three-parameter filtration {Fs;t,v :
s, t, v ∈ Q+} is commuting in the sense of Khosh-
nevisan [15, p. 35]. By a density argument, it suffices
to prove (44) in the case that Y = Y1Y2, where Y1 and
Y2 are bounded, and measurable with respect to F (1)

s′,t′

and F (2)
s′,v′ , respectively. By the independence of F (1)

s′,t′

and F (2)
s′,v′ ,

E
[
Y |Fs;t,v

]
= E

[
Y1|F (1)

s,t

]
E
[
Y2|F (2)

s,v

]
a.s. (45)

By the Cairoli-Walsh commutation theorem [15, The-
orem 2.4.1, p. 237], F (1) and F (2) are each two-
parameter, commuting filtrationes. It follows from
Theorem 3.4.1 in [15, p.36] that

E
[
Y1|F (1)

s,t

]
= E

[
Y1|F (1)

s∧s′,t∧t′
]
a.s.

E
[
Y2|F (2)

s,t

]
= E

[
Y2|F (2)

s∧s′,v∧v′
]
a.s.

(46)

Combining (45) and (46), we obtain (44) in the case
that Y has the special form Y = Y1Y2 as described
above. The general form of (44) follows from the

WSEAS TRANSACTIONS on MATHEMATICS Zhenlong Chen

E-ISSN: 2224-2880 23 Issue 1, Volume 12, January 2013



mentioned special case and density. ⊓⊔

Lemma 14 Choose and fix a number p > 1.
Then for almost surely nonnegative random variable
Y ∈ Lp=̂Lp(Ω,∨Fs;t,v≥0,P), there exists a con-
tinuous modification of the three-parameter process
{E[Y |Fs;t,v], s, t, v ≥ 0}, such that

E
[

sup
s,t,v∈R+

E
[
Y |Fs;t,v

]]p
≤
( p

p− 1

)3p
E
[
Y p
]
.

Proof: By using (44), Lemma 9 and a similar
argument as in the proof of Lemma 2,3 of Chen and
Liu [7], we can also prove Lemma 14. ⊓⊔

Lemma 15 Choose and fix three numbers 0 < a <
b < c < ∞ with c − a ≤ δ . Then, there exists a
constant c17 such that the following holds outside a
single null set: For all 0 < ϵ < 1, a ≤ a1, b1, b2 ≤ b,
and µ ∈ P(R+),

E[Ĵϵ(µ)|Fa1;b1,b2 ] ≥
c17
ϵd

∫
F∩[a1,b]

Gϵ(F1(0, s]− F1(0, a1])

× µ(ds)1A(ϵ/2;a1,b1,b2). (47)

Proof: It follows from (32) that

E[Ĵϵ(µ)|Fa1;b1,b2 ]

≥ 1

ϵd

∫ c

b1

∫ c

b2

∫
F∩[a1,b]

P
(
A(ϵ; s, t)|Fa1;b1,b2

)
× µ(ds)dF2(0, t2]dF2(0, t1). (48)

A generalized white-noise decomposition implies that
following: For all s ≥ a1, t1 ≥ b1, and t2 ≥ b2,

W̃ (1)(s, t1) =W̃
(1)(a1, b1) + Ŵ (1)([a1, s]× [0, b1])

+ Ŵ (1)([0, a1]× [b1, t1])

+ Ŵ (1)([a1, s]× [b1, t1]), (49)

W̃ (2)(s, t2) =W̃
(2)(a1, b2) + Ŵ (2)([a1, s]× [0, b2])

+ Ŵ (2)([0, a1]× [b2, t2])

+ Ŵ (2)([a1, s]× [b2, t2]). (50)

Here, the Ŵ (i),s are generalized Brownian sheets.
The collection {Ŵ (i)

j , W̃ (i)(a1, bi) : i, j = 1, 2} is
totally independent. By (48), (49) and (50), we can
infer that the following is a lower bound for the right

of (48), almost surely on the event A(ϵ/2, a1; b1, b2),

1

ϵd

∫ c

b1

∫ c

b2

∫
F∩[a1,b]

µ(ds)dF2(0, t2]dF2(0, t1)

× P
{∣∣∣Ŵ (1)([a1, s]× [0, b1]) + Ŵ (1)([0, a1]

× [b1, t1]) + Ŵ (1)([a1, s]× [b1, t1])

− Ŵ (2)([a1, s]× [0, b2])− Ŵ (2)([0, a1]

× [b2, t2])− Ŵ (2)([a1, s]× [b2, t2])
∣∣∣ ≤ ϵ

2

}
=

1

ϵd

∫ c

b1

∫ c

b2

∫
F∩[a1,b]

P
{
σ|W̃ (⟨1⟩)| ≤ ϵ

2

}
. (51)

Here,

σ2 =(F1(0, s]− F1(0, a1])(F2(0, t1]− F2(0, b1])

+ (F1(0, s]− F1(0, a1])F2(0, b1]

+ F1(0, a1](F2(0, t1]− F2(0, b1])

+ (F1(0, s]− F1(0, a1])(F2(0, t2]− F2(0, b2])

+ (F1(0, s]− F1(0, a1])F2(0, b2]

+ F1(0, a1](F2(0, t2]− F2(0, b2]).

The range of possible values of a1, b1 and b2 is
respectively [a, b] and [a, b]2. Therefore, there exists a
constant, which only depends on the parameters a and
b, such that

σ2 ≤min{F1(0, b], 2F2(0, b]}(|F1(0, s]

− F1(0, a1]|+ |F2(0, t1]− F2(0, b1]|
+ |F2(0, t2]− F2(0, b2]|). (52)

Applying the bound of (52) and Lemma 9, we can find
that (47) holds a.s., but the null set could feasibly de-
pend on (a1, b1, b2, ϵ).

To ensure that the null set can be chosen indepen-
dently from (a1, b1, b2, ϵ), we first note that the inte-
gral on the right-hand side of (47) is:

(i) Continuous in ϵ > 0;
(ii) independent of b1, b2 ∈ [a, b];
(iii) lower semi-continuous in a1 ∈ [a, b].
Similarly, (a1, b1, b2, ϵ) 7→ 1A(ϵ;a1,b1,b2) is

left-continuous in ϵ > 0 and lower semi-continuous
in (a1, b1, b2) ∈ [a, b]3. Therefore, it suffices to
prove that the left-hand side of (47) is a.s. continu-
ous in (a1, b1, b2) ∈ [a, b]3, and left-continuous in
ϵ > 0. The left-continuity assertion about ϵ > 0
is evident; continuous in (a1, b1, b2) follows if we
could prove that for all bounded random variables Y ,
(a1, b1, b2) 7→ E[Y |Fa1;b1,b2 ] has an a.s.-continuous
modification. But this follows from Lemma 14. ⊓⊔
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Lemma 16 Choose and fix two numbers 0 < a <
b <∞ with b− a ≤ δ, and

D(ω)=̂
{
a ≤ s ≤ b : inf

t1,t2∈[a,b]
|W̃ (2)(s, t2)

− W̃ (1)(s, t1)|(ω) = 0
}
.

Then, there exist positive constants c18 and c19 such
that for all compact, non-random sets F ⊂ [a, b],

c18Capβ(d−4)/2(F ) ≤ P{D ∩ F ̸= ∅}
≤ c19Capα(d−4)/2(F ). (53)

Proof: For all 0 < ϵ < 1, define the closed random
sets

Dϵ(ω)=̂
{
a ≤ s ≤ b : inf

t1,t2∈[a,b]
|W̃ (2)(s, t2)

− W̃ (1)(s, t1)|(ω) ≤ ϵ
}
.

Choose and fix a probability measure µ ∈ P(F )
such that Dϵ intersects F almost surely on the event
{Jϵ(µ) > 0}. By the Cauchy-Schwarz inequality,(

E[Jϵ(µ)]
)2

=
(
E[Jϵ(µ);Dϵ ∩ F ̸= ∅]

)2
≤ E[Jϵ(µ)]2P(Dϵ ∩ F ̸= ∅). (54)

It follows from (27), (32) and (54) that

P(Dϵ ∩ F ̸= ∅) ≥
(
E[Jϵ(µ)]

)2
E[Jϵ(µ)]2

≥
(
E[Jϵ(µ)]

)2
E[Ĵϵ(µ)]2

.

Let ϵ ↓ 0 and appeal to compactness to find that

P(D ∩ F ̸= ∅) ≥
lim inf
ϵ→0

(
E[Jϵ(µ)]

)2
KIβ(d−4)/2(µ)

.

Here, we have used Lemma 12. According to Lemma
11, the numerator is bounded below by a strictly posi-
tive number that does not depend on µ. Therefore, the
lower bound of Lemma 16 follows from optimizing
over all µ ∈ P(F ).

In order to obtain the upper bound, without any
loss in generality, we can assume that P(Dϵ ∩ F ̸=
∅) > 0. For all 0 < ϵ < 1, define

τϵ=̂ inf
{
s ∈ F : inf

t1,t2∈[a,b]
|W̃ (2)(s, t2)

− W̃ (1)(s, t1)| ≤ ϵ
}
.

As usual, inf ∅=̂∞. Define

Fs=̂
∨

t,v∈[0,∞)2

Fs;t,v for all s ≥ 0.

We note that τϵ is a stopping time with respect
to the one-parameter filtration {Fs : s ≥ 0}. It is
also easy to see that there exist [0,∞]-valued random
variables τ ′ϵ and τ ′′ϵ such that: (i) τ ′ϵ ∨ τ ′′ϵ = ∞ if and
only if τϵ = ∞; and (ii) almost surely on {τϵ <∞},

|W̃ (2)(τϵ, τ
′
ϵ)− W̃ (1)(τϵ, τ

′′
ϵ )| ≤ ϵ.

Define

pϵ=̂P{τϵ <∞}, and νϵ(•)=̂P{τϵ ∈ •|τϵ <∞}.

By the assumption and the definition of the classical
conditional probability,

inf
ϵ>0

pϵ ≥ P(D∩F ̸= ∅) > 0, and νϵ ∈ P(F ). (55)

Now consider the process {M ϵ, 0 < ϵ < 1} defined
by

M ϵ
a1;b1,b2=̂E[Ĵϵ(νϵ)|Fa1;b1,b2 ].

By Lemmas 14, 15, and the Cauchy-Schwarz inequal-
ity,

E
[

sup
a1,b1,b2∈R+

(
M ϵ

a1;b1,b2

)2]
≥E
[(
M ϵ

τϵ,τ ′′ϵ ,τ ′ϵ

)2]
=E
[
E
[
Ĵϵ(νϵ)|Fτϵ,τ ′′ϵ ,τ ′ϵ

]]2
≥c20pϵ

ϵ2d
E
[( ∫

F∩[τϵ,b]
Gϵ(F1(0, s]

− F1(0, τϵ])νϵ(ds)
)2

|τϵ <∞
]

≥c20pϵ
ϵ2d

(
E
[ ∫

F∩[τϵ,b]
Gϵ(F1(0, s]

− F1(0, τϵ])νϵ(ds)|τϵ <∞
])2

. (56)

In addition,

E
[ ∫

F∩[τϵ,b]
Gϵ(F1(0, s]− F1(0, τϵ])νϵ(ds)|τϵ <∞

]
=

∫ ∫
{s∈F∩[u,2]}

Gϵ(F1(0, s]− F1(0, u])νϵ(ds)νϵ(du)

≥1

2

∫ ∫
Gϵ(F1(0, s]− F1(0, u])νϵ(ds)νϵ(du).

(57)
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Combining Lemmas 12, 13, (56) and (57),

c21pϵ
4ϵ2d

(∫ ∫
Gϵ(F1(0, s]− F1(0, u])νϵ(ds)νϵ(du)

)2
≤E
[

sup
a1,b1,b2∈Q+

(
M ϵ

a1;b1,b2

)2]
≤26E

[(
Ĵϵ(νϵ)

)2]
≤c22
ϵd

∫ ∫
Gϵ(F1(0, s]− F1(0, u])νϵ(ds)νϵ(du).

(58)

Thanks to (23), (55) and (58),

P(D ∩ F ̸= ∅)

≤c23ϵd
[ ∫ ∫

Gϵ(F1(0, s]− F1(0, u])νϵ(ds)νϵ(du)
]−1

≤c24
[ ∫ ∫

Uα(d−4)/2(s− u)νϵ(ds)νϵ(du)
]−1

=
c25

Iα(d−4)/2(νϵ)
. (59)

Choose and fix a number η > 0. For all 0 < ϵ <
η1/2,

Iα(d−4)/2(νϵ) ≥
∫ ∫

{|s−u|≥η}
Uα(d−4)/2(s− u)

× νϵ(ds)νϵ(du). (60)

Recall that {νϵ, ϵ > 0} is a net of probability
measures on F . Because F is compact, Prohorov’s
theorem ensures that there exists a subsequential weak
limit ν0 ∈ P(F ) of {νϵ, ϵ > 0}, as ϵ→ 0. Therefore,
we can apply Fatou’s lemma to find that

lim inf
ϵ→0

Iα(d−4)/2(νϵ)

≥ lim
η→0

∫ ∫
{|s−u|≥η}

Uα(d−4)/2(s− u)ν0(ds)ν0(du)

= Iα(d−4)/2(ν0). (61)

By (59), (60) and (61),

P(D ∩ F ̸= ∅) ≤ c25
Iα(d−4)/2(ν0)

≤ c25Capα(d−4)/2(F ).

This finished the proof of Lemma 16. ⊓⊔

Proof of Theorem 3. Let I and J be disjoint,
closed intervals in (0,∞) with the following property

that x < y for all x ∈ I and y ∈ J . Define

Dd(I, J)=̂
{
a ≤ s ≤ b : W̃ (s, t1) = W̃ (s, t2) for

some t1 ∈ I and t2 ∈ J
}
.

It suffices to prove that

K3Capβ(d−4)/2(F ) ≤ P{Dd(I, J) ∩ F ̸= ∅}
≤ K4Capα(d−4)/2(F ). (62)

Choose and fix two number 0 < a < b < δ with
b = 2a. Moreover, without loss of much generality,
we may assume that

I = [
b− a

2
,
b+ a

2
], J = [

3b+ a

2
,
4b+ a

2
] ⊂ [0, δ]

and F ⊆ [a, b]. Now define the random fields,

W̃ (1)(s, t)=̂W̃
(
s, b+2a

2 − t
)
− W̃

(
s, b+2a

2

)
,

W̃ (2)(s, t)=̂W̃
(
s, b+2a

2 + t
)
− W̃

(
s, b+2a

2

)
for 0 ≤ s, t ≤ b+2a

2 . By checking two covariances,
we can show that{
W̃
(
s,
b+ 2a

2
− t
)
−W̃

(
s,
b+ 2a

2

)
: a ≤ s, t ≤ b

}
,

{
W̃
(
s,
b+ 2a

2
+ t
)
− W̃

(
s,
b+ 2a

2

)
: a ≤ s, t ≤ b

}
are independent generalized Brownian sheets. On the
other hand, the following two results are equivalent:

(i) There exists s, t1, t2 ∈ [a, b]3 such that
W̃ (1)(s, t1) = W̃ (2)(s, t2);

(ii) There exists (s, t1, t2) ∈ [a, b] × I × J such
that W̃ (s, t1) = W̃ (s, t2).

Therefore, (62) follows from Lemma 16. This fin-
ished the proof of Theorem 3. ⊓⊔

4 Polar sets of D̂d and D̄d

An N-parameter, Rd-valued generalized Brownian
sheet has the following stochastic integral represen-
tation

W̃ (t) =

∫ t1

0
· · ·
∫ tN

0
f1(s1) · · · fN (sN )dW (s)

=̂

∫
[0,t]

f(s)dW (s), (63)

where W = {W (s), s ∈ RN
+} is a Brownian sheet,

and for any k = 1, . . . , N , fk(x) =

√
dFk

dx
is the
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Radon-Nikodym derived function of Fk which is
square integrable (cf. [1]).

Lemma 17 For all s, t ∈ RN
+ with s ≼ t, and r ∈

Rd. Then,

E
{
⟨r, W̃ (t)⟩|Fu, 0 ≼ u ≼ s

}
= ⟨r, W̃ (s)⟩. (64)

Proof: For all s, t ∈ RN
+ with s ≼ t, we decompose

the rectangle [0, t] into the following disjoint union:

[0, t] = [0, s] ∪
N∪
j=1

R(tj) ∪△(s, t), (65)

where R(tj) = {(v1, · · · , vN ) : 0 ≤ vi ≤ si, if i ̸=
j, sj < vj ≤ tj} and △(s, t) can be written as a
union of 2N −N −1 sub-rectangles of [0, t]; see [18].
It follows from (63) and (65) that for all s, t ∈ RN

+
with s ≼ t,

W̃ (t) =

∫
[0,s]

f(v)W (dv) +

N∑
j=1

∫
R(tj)

f(v)W (dv)

+

∫
△(s,t)

f(v)W (dv)

=̂W̃ (s) +
N∑
j=1

Yj(t) + Z(s, t).

Since the processes W̃ (s), Yj(t) (1 ≤ j ≤ N)
and Z(s, t) are defined by the stochastic integrals
over disjoint sets, they are independent. Therefore,
Yj(t) (1 ≤ j ≤ N) and Z(s, t) are independent with
F(s). This completes the proof of Lemma 17. ⊓⊔

Let W̃ (1) and W̃ (2) be two independent, two-
parameter generalized Brownian sheets in Rd. For all
0 < ϵ < 1, 0 ≤ s, t1, t2 < ∞ and x = (x1, x2, x3) ∈
R3
+, define

∆(s, t1, t2)=̂W̃
(2)(s, t2)− W̃ (1)(s, t1),

♭(x; ϵ)=̂[x1, x1 + ϵ]× [x2, x2 + ϵ]× [x3, x3 + ϵ].

Lemma 18 Choose and fix two numbers 0 < a <
b < ∞ . Then, there exists a constant c26 such that
for all 0 < ϵ < δ, x = (x1, x2, x3) ∈ [a, b]3,

E
[

sup
y∈♭(x;ϵ)

|∆(x)−∆(y)|
]d

≤ c26ϵ
αd
2 . (66)

Proof: By some elementary estimates, we have

E
[

sup
y∈♭(x;ϵ)

|∆(x)−∆(y)|
]d

≤ 2d−1
(
E
[

sup
y∈♭(x;ϵ)

|W̃ (1)(x1, x2)− W̃ (1)(y1, y2)|d
]

+ E
[

sup
y∈♭(x;ϵ)

|W̃ (2)(x1, x3)− W̃ (2)(y1, y3)|d
])

=̂2d−1(I1 + I2). (67)

Let Sd := {r ∈ Rd : |r| = 1}. It follows from
the Hölder inequality that

I1 =E
[
sup

y∈♭(x;ϵ)

( d∑
i=1

(
W̃

(1)
i (x1, x2)−W̃ (1)

i (y1, y2)
)2) d

2
]

≤d
d
2 sup
r∈Sd

E
[
sup

y∈♭(x;ϵ)

∣∣∣⟨r, W̃ (1)(x1, x2)−W̃ (1)(y1, y2)⟩
∣∣∣d].

(68)

By (68), Lemma 17 and the Doob-Cairoli inequality,
we can deduce that

I1 ≤d
d
2

( d

d− 1

)2d
sup
r∈Sd

E
[∣∣∣⟨r,Ξ(x1, x2; ϵ)⟩∣∣∣d]

=d
d
2

( d

d− 1

)2d
E
[
|Ξ(x1, x2; ϵ)|

]d
, (69)

where Ξ(x1, x2; ϵ)=̂W̃ (1)(x1, x2)−W̃ (1)(x1+ϵ, x2+
ϵ).

In accord with the inequality [7, Lemma 3.2],
there exists a constant c27(a, b, δ) such that for all
0 < ϵ < δ, (x1, x2, x3) ∈ [a, b]3,

σ2=̂E
[
Ξ2
j (x1, x2; ϵ)

]
≤ c27ϵ

α. (70)

Since
d∑

j=1

(Ξj(x1, x2; ϵ)

σ

)2
∼ χ2(d).

Then there exists a constant c28(a, b, d) such that

E

 d∑
j=1

(Ξj(x1, x2; ϵ)

σ

)2 d
2

≤ c28. (71)

By (69), (70) and (71),

I1 ≤ d
d
2

( d

d− 1

)2d
(σ2)

d
2E

 d∑
j=1

(Ξj(x1, x2; ϵ)

σ

)2 d
2

≤
(
c27c28d

) d
2

( d

d− 1

)2d
ϵ
αd
2 . (72)
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Similarly, we can apply the same method above
to obtain that

I2 ≤
(
c27c28d

) d
2

( d

d− 1

)2d
ϵ
αd
2 . (73)

Therefore, (66) follows from (67), (72), and (73). This
finished the proof of Lemma 18. ⊓⊔

Let W̃ (1) and W̃ (2) be two independent general-
ized Brownian sheets in Rd, and define for all µ ∈
P(R2

+),

Iϵ(µ)=̂
1

ϵd

∫ b

a

∫ ∫
1A(ϵ;s,t)µ(dsdt1)dF2(0, t2],

(74)
where A(ϵ; s, t) is the event

A(ϵ; s, t)=̂
{
|W̃ (2)(s, t2)− W̃ (1)(s, t1)| ≤ ϵ

}
,

for all a ≤ s, t1, t2 ≤ b and ϵ > 0.

Lemma 19 Choose and fix two numbers 0 < a <
b <∞ . Then,

inf
0<ϵ<1

inf
µ∈P([a,b])

E[Iϵ(µ)] > 0. (75)

Proof: For all s, t1, t2 ∈ [a, b], let

σ2=̂Var
(
W̃

(2)
j (s, t2)− W̃

(1)
j (s, t1)

)
, 1 ≤ j ≤ d.

The independence of W̃ (1) and W̃ (2) implies

2F1(0, a]F2(0, a] ≤ σ2 ≤ 2F1(0, b]F2(0, b]. (76)

By (76), we have

P
{
A(ϵ; s, t)

}
≥
[ ∫ ϵ/d

−ϵ/d

1√
2πσ

exp
(
− u2

2σ2

)
du
]d

≥
( ε2

πF1(0, b]F2(0, b]d2

)d/2
× exp

(
− ϵ2

4dF1(0, a]F2(0, a]

)
. (77)

By (74) and (77), we have

E[Iϵ(µ)] =
1

ϵd

∫ b

a

∫ ∫
P
{
A(ϵ; s, t)

}
µ(dsdt1)dF2(0, t2]

≥(F2(0, b]− F2(0, a])µ([a, b]
2)(

πF1(0, b]F2(0, b]d
)d/2

× exp
(
− ϵ2

4dF1(0, a]F2(0, a]

)
.

This proves the lemma. ⊓⊔

Next we present a bound for the second moment
of Iϵ(µ). For technical reason, we first define

Îϵ(µ)=̂
1

ϵd

∫ c

a

∫ ∫
1A(ϵ;s,t)µ(dsdt1)dF2(0, t2],

Lemma 20 Choose and fix three numbers 0 < a <
b < c < ∞ with c− a ≤ δ . Then, there exists a con-
stant c29 such that for all Borel probability measures
µ on R2

+ and all 0 < ϵ < 1,

E[Îϵ(µ)]2 ≤
c29
ϵd

∫ ∫
gϵ(|F1(0, s]− F1(0, u]|

+ |F2(0, t1]− F2(0, v1]|)µ(dsdt1)µ(dudv1)
≤c29Iβ(d−2)/2(µ). (78)

Proof: For all ϵ > 0, s, u ∈ [a, b], and t =
(t1, t2), v = (v1, v2) ∈ [a, b] × [b, c], it follows from
(43) that

Pϵ(s, u; t, v)

≤c30ϵdfϵ
(
|F1(0, u]− F1(0, s]|+ |F2(0, v1]

− F2(0, t1]|+ |F2(0, t2]− F2(0, v2]|
)
.

By the Fubini-Tonelli theorem and (2),

E[Îϵ(µ)]2 ≤
c31
ϵ2d

∫ ∫ [ ∫
[a,c]×[a,c]

Pϵ(s, u; t, v)dF2(0, t2]

× dF2(0, v2]
]
µ(dsdt1)µ(dudv1)

≤c32
ϵd

∫ ∫
gϵ
(
|F1(0, s]−F1(0, u]|+|F2(0, t1]

− F2(0, v1]|
)
µ(dsdt1)µ(dudv1)

≤c33
ϵd

∫ ∫
gϵ
(
(|s− u|+ |t1 − v1|)β

)
× µ(dsdt1)µ(dudv1). (79)

This is the first inequality of the lemma. By (79) and
Lemma 12, we have

E[Îϵ(µ)]2 ≤c34
∫ ∫

Uβ(d−2)/2(|s− u|+ |t1 − v1|)

× µ(dsdt1)µ(dudv1)

= c35Iβ(d−2)/2(µ).

This completes the lemma. ⊓⊔

Proof of Theorem 5 We first derive the lower bound
in (11) and (12). Recall (74). Choose and fix µ ∈
P(G), and define for all ϵ > 0,

Tϵ(µ)=̂
1

ϵd

∫ ∫ ∫
1A(ϵ;s,t)µ(dsdt1dt2). (80)
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By the same argument as in the proof of Lemma 11,
we can deduce that

inf
0<ϵ<1

inf
µ∈P([a,b]3)

E[Tϵ(µ)] > 0. (81)

Similarly, we can apply (3.19) to find that

E[Tϵ(µ)]2 ≤
c36
ϵd

∫ ∫ ∫ ∫
fϵ
(
|F1(0, u]− F1(0, s]|

+ |F2(0, v1]− F2(0, t1]|+ |F2(0, v2]

− F2(0, t2]|
)
µ(dsdt1dt2)µ(dudv1dv2)

≤c37
ϵd

∫ ∫ ∫ ∫
fϵ
(
(|u− s|+ |v1 − t1|

+ |v2 − t2|)β
)
µ(dsdt1dt2)µ(dudv1dv2)

= c38Iβd/2(µ). (82)

Here, we have used the inequality, fϵ(x) ≤ ϵd|x|−d/2.
Define

D̂ϵ(ω)=̂{(s, t1, t2) ∈ [a, b]3 : |W̃ (1)(s, t1)

− W̃ (2)(s, t2)|(ω) ≤ ϵ},

D̄ϵ(ω)=̂{(s, t1) ∈ [a, b]2 : inf
t2∈[a,b]

|W̃ (1)(s, t1)

− W̃ (2)(s, t2)|(ω) ≤ ϵ}.

By (81), (82) and the Paley-Zygmund inequality to
find that

P(D̂ϵ ∩G ̸= ∅) ≥
(
E[Tϵ(µ)]

)2
E[Tϵ(µ)]2

.

Let ϵ ↓ 0 and appeal to compactness to find that

P(D̂d ∩ F ̸= ∅) ≥
lim inf
ϵ→0

(
E[Iϵ(µ)]

)2
KIβd/2(µ)

.

Therefore, the lower bound of (11) follows from opti-
mizing over all µ ∈ P(G). Applying Lemmas 19, 20,
and repeating the same reason above, we can obtain
the lower bound of (12).

Now we prove the upper bound of (11) and (12).
For all x ∈ [a, b]3 and 0 < ϵ < δ, it follows from (66)
that

P
{
D̂d ∩ ♭(x; ϵ) ̸= ∅

}
≤P
{
|∆(x)| ≤ sup

y∈♭(x;ϵ)
|∆(y)−∆(x)|

}
≤c39E

[
sup

y∈♭(x;ϵ)
|∆(y)−∆(x)|

]d
≤c40ϵαd/2. (83)

In order to obtain the upper bound, without any
loss in generality, we can assume that Hαd/2(G) <

∞. In this case we can find x1, x2, · · · ∈ [a, b]3 and
r1, r2, · · · ∈ (0, δ) such that G ⊆ ∪∞

i=1♭(xi; ri) and∑∞
i=1 r

αd/2
i ≤ 2Hαd/2(G). Thus, by (83),

P
{
D̂d ∩G ̸= ∅

}
≤

∞∑
i=1

P
{
D̂d ∩ ♭(xi; ri) ̸= ∅

}
≤ c40

∞∑
i=1

r
αd/2
i

≤ 2c40Hαd/2(G).

This completes our proof of the upper bound of (11).
In order to prove the lower bound for D̄d note that

D̄d intersects E if and only if D̂d intersects [a, b]×E.
To conclude, it suffices to prove that

Hαd/2([a, b]× E) > 0 → H(αd−2)/2(E) > 0.

By the Frostman lemma, together with Hαd/2([a, b]×
E) > 0, then there exist a measure µ on [a, b]×E and
a constant c41 such that for all three-dimensional balls
B(x, r) of radius r > 0,

µ
(
B(x, r)

)
≤ c41r

αd/2.

For all Borel sets C ⊆ R2, define

µ̄(C)=̂µ([a, b]× C).

Then, µ̄ is a measure supported on E. It follows from
a covering argument, and the Frostman property of µ,
that for all two-dimensional balls B′(x, r) of radius
r > 0,

µ
(
B′(x, r)

)
≤ c42r

(αd−2)/2. (84)

Applying the Frostman lemma again, and (84), we fin-
ish the proof of Theorem 5. ⊓⊔

5 Polar sets of Ld
In this section, we consider the projection Ld of
W̃−1{0} onto x-axis.

Recall that a function f : Rn → [0,∞] is of strict
positive type if (i) f is locally integrable away from
0 ∈ Rn; and (ii) the Fourier transform of f is strictly
positive. Corresponding to such a function f we can
define a function Πmf as follows:

(Πmf)(x)=̂

∫
[0,1]m

f(x⊗ y)dy for all x ∈ Rn−m,

(85)
where x⊗ y=̂(x1, . . . , xn−m, y1, . . . , yn) ∈ Rn is the
tensor product of x and y.
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The following lemma follows from Theorem 3.1
[10, p.8].

Lemma 21 (Projection theorem for capacities). Let
n > 1 be an integer, and suppose that f : Rn →
[0,∞] is of strict positive type and continuous on
Rn\{0}. Then, for all all integers 1 ≤ m < n and
compact sets F ⊂ Rn−m,

Capf ([0, 1]
m × F ) = CapΠmf (F ).

Theorem 1 characterizes the polar sets of Ld. We
provide its proof as follows.

Proof of Theorem 1 The function Uγ in (17) is of
strict positive type for all 0 < γ < d. We note
also that Uγ is continuous away from the origin. In
light of Theorem 1.1 [6, p.78], we can deduce the
following results: For all non-random compact sets
E,F ⊂ (0,∞) with diam(E × F ) < δ, then

A−1
1 Capβd/2(E × F ) ≤ P{W̃−1{0} ∩ (E × F ) ̸= ∅}
≤ A1Capαd/2(E × F ), (86)

By Lemma 5.1, we have

Capβd/2([0, 1]× F ) = CapΠ1Uβd/2
(F ) (87)

and

Capαd/2([0, 1]× F ) = CapΠ1Uαd/2
(F ). (88)

For all x ≥ ε2 > 0,

(Π1Uβd/2)(x) ≤
∫ 1

0

1

|x+ y|βd/2
dy

=

∫ x+1

x

1

yβd/2
dy

=
2

βd− 2
[x1−βd/2 − (x+ 1)1−βd/2]

≤ 4

βd− 2
Uβd/2−1(x). (89)

The same reasoning shows that when x ≥ ε2 > 0,

(Π1Uαd/2)(x) ≥
∫ 1

0

1

|x+ y|αd/2
dy

=

∫ x+1

x

1

yαd/2
dy

≥ 2(1− 21−αd/2)

|αd− 2|
x1−αd/2

=
2(1− 21−αd/2)

|αd− 2|
Uαd/2−1(x). (90)

By (87) and (89), we have

CapΠ1Uβd/2
(F ) ≥ c43Capβd/2(F ). (91)

Using (88) and (90), we have

CapΠ1Uαd/2
(F ) ≤ c44Capαd/2(F ). (92)

Combining (86), (91) and (92), we prove the theorem.
⊓⊔

Now, we state some remarks and corollaries
as follows. The following corollary follows from
Theorem 1.

Corollary 22 For all non-random compact sets F ⊂
(0,∞) with diamF < δ and α = β = 1, then

Cap(d−2)/2(F ) > 0 ⇔ P{Ld ∩ F ̸= ∅} > 0.

Furthermore, we can apply Theorem 3 to find the
following lemma.

Corollary 23 For all non-random compact sets F ⊂
(0,∞) with diamF < δ and α = β = 1, then

Cap(d−4)/2(F ) > 0 ⇔ P{Dd ∩ F ̸= ∅} > 0.

The last corollary follows from Theorem 5.

Corollary 24 For all non-random compact setsE ⊂
[a, b]2 andG ⊂ [a, b]3 with b−a < δ and α = β = 1,
then

Capd/2(G) > 0 ⇒ P{D̂d ∩G ̸= ∅} > 0

⇒ Hd/2(G) > 0,

Cap(d−2)/2(E) > 0 ⇒ P{D̄d ∩ E ̸= ∅} > 0

⇒ H(d−2)/2(E) > 0.

Even if α = β = 1, we can say that W̃ is much
wider than Brownian sheet. In order to explain this,
we give an example as following.

Example 25 For any t = (t1, t2) ∈ R2
+, let

Fℓ(0, tℓ] =

∫ tℓ

0
(2− sinx)dx, ℓ = 1, 2.

Clearly, Fℓ is a Lebesgue-Stieljes measure , and for
any sℓ, tℓ ∈ R+, we have

|sℓ−tℓ| ≤ |Fℓ(0, tℓ]−Fℓ(0, sℓ]| ≤ 3|sℓ−tℓ|, ℓ = 1, 2.

However, Fℓ is not a Lebesgue measure.
The results above are sharp. They recover the cor-

responding results for Brownian sheet and Brownian
motion.
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